Student's Name:

TEACHER'S NAME:

2022

HURLSTONE AGRICULTURAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 4

Mathematics Extension 2

General	• Reading time – 10 minutes
Instructions	• Working time – 3 hours
	• Write using a black or blue pen
	 NESA approved calculators may be used
	• A reference sheet is provided in the Section I booklet
	 For questions in Section II, show all relevant mathematical reasoning and/or calculations
	• This examination paper is not to be removed from the examination centre
Total marks: 100	 Section I – 10 marks (pages 2 – 5) Attempt Questions 1 – 10. The multiple-choice answer sheet has been provided Allow about 15 minutes for this section
	Section II – 90 marks (pages $6 - 11$)
	 Attempt Questions 11 – 16, write your solutions in the spaces provided.
	• There are 6 separate question/answer booklets. Extra working pages are available if required.
	• Allow about 2 hours and 45 minutes for this section.

Disclaimer: Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2022 HSC Mathematics Advanced Examination.

Section 1

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

1 What is the distance from the origin to the point $\begin{pmatrix} -2 \\ 3\sqrt{3} \\ 4 \end{pmatrix}$?

- A. $2 + 3\sqrt{3}$
- B. $\sqrt{29}$
- C. $\sqrt{47}$
- D. $24\sqrt{3}$

2 Let the point *P* on an Argand diagram represent the complex number *z*. After being multiplied by another complex number, ω , *P* is rotated 90° clockwise and |z| is enlarged by a factor of 3. Which of the following is the value of ω ?

- A. 3*i*
- В. *-3i*
- C. e^{-3i}
- D. $3e^{\frac{\pi}{2}i}$

3 Consider the statement:

" $\exists x \in R$, $\ln x = 1$ and x > 2."

Which of the following is the negation of this statement?

- A. $\exists x \in R, \ln x \neq 1 \text{ or } x \leq 2$
- B. $\exists x \in R, \ln x \neq 1 \text{ and } x \leq 2$
- C. $\forall x \in R, \ln x \neq 1 \text{ or } x \leq 2$
- D. $\forall x \in R, \ln x \neq 1 \text{ and } x \leq 2$

Which Argand diagram shows the solutions of $(z^3 - i)(z^6 - 1) = 0$?

4

5 In the complex plane, a circle C has diameter AB, where the points A and B represent the complex numbers 1-5i and 3-i respectively.

What is the equation of *C*?

- A. $|z-2+3i| = 2\sqrt{5}$
- B. $|z-2+3i| = \sqrt{5}$
- C. $|z+2-3i| = 2\sqrt{5}$
- D. $|z+2-3i| = \sqrt{5}$

6 The integral $\int \left(\frac{1}{x\sqrt{4+x^2}}\right) dx$ can be most efficiently solved with which substitution?

- A. $x = \tan \theta$
- B. $x = \sec \theta$
- C. $x = 2 \sec \theta$
- D. $x = 2 \tan \theta$

7 Two vectors are such that
$$\underline{y} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 and $\underline{y} = \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix}$.

What is the correct evaluation of $|\underline{u}| \times \underline{v} \cdot \underline{v}$?

- A. 84
- B. 504
- C. $6\sqrt{14}$
- D. $36\sqrt{14}$
- 8 A particle moves in a straight line with simple harmonic about a centre *O*. The period of motion is π seconds. When the particle is 0.50 metres from *O*, its speed is 2.40 m/s.

What is the particle's maximum speed?

- A. 2.40 m/s
- B. 2.60 m/s
- C. 3.38 m/s
- D. 5.20 m/s

Which expression is equal to $\int \tan^{-1} x \, dx$?

9

A.
$$x \tan^{-1} x - \int \frac{x}{1+x^2} dx$$

B. $x^2 \tan^{-1} x - \int \frac{x^2}{1+x^2} dx$
C. $\frac{1}{2} (\tan^{-1} x)^2$

D.
$$\frac{x}{2} \left(\tan^{-1} x \right)^2 - \int \frac{x}{\tan x} dx$$

10 A particle moves in a straight line such that its acceleration *a* is given by a = vx, where *v* is the particle's velocity, *x* is the particle's position and *v*, x > 0.

Which of the following diagrams best shows the relationship between v and x?

END OF SECTION I

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section

Answer the questions in the appropriate writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 ([15 marks]	Use the Question 1	11 Writing Booklet.
---------------	------------	--------------------	---------------------

			MARKS
(a)	The c Points and C	omplex number $u = 3 - i$ is represented on an Argand diagram by the point A. s B and C, respectively, represent the complex numbers \overline{u} and $\overline{u} - u$, c) represents the origin.	
	(i)	Sketch points A , B and C on an Argand diagram.	2
	(ii)	What type of quadrilateral is OABC?	1
	(iii)	Calculate $\frac{\overline{u}}{u}$, expressing your answer in the form $x + iy$	1
		where x and y are real.	
	(iv)	Deduce that $\tan^{-1}\left(\frac{3}{4}\right) = 2\tan^{-1}\left(\frac{1}{3}\right)$.	2
(b)	Find	the primitive of $\frac{4x-1}{x^2+2x+6}$.	3
(c)	If x=	= $1-2i$ is a root of $x^3 + ax^2 - x + 15$, find <i>a</i> if <i>a</i> is a real number.	2
(d)	Wher	an object moves through water, it experiences resistance proportional to its speed.	
	(i)	If an object of unit mass moving at 10 m/s in water experiences a resistance of 40 Newtons, write an expression for the acceleration due to resistance, in terms of y	1
	(**)	write an expression for the acceleration due to resistance, in terms of v.	1
	(11)	A metal ball of unit mass is released from rest in water and immediately sinks. Given that $g = 10 \text{ m/s}^2$, and after t seconds the velocity of the ball is v m/s, find the velocity of the metal ball as a function of t.	3

(a) Relative to a fixed origin *O*, the point *A* has position vector $2\underline{i} + 3\underline{j} - 4\underline{k}$, the point *B* has position vector $4\underline{i} - 2\underline{j} + 3\underline{k}$, and the point *C* has position vector $a\underline{i} + 5\underline{j} - 2\underline{k}$, where *a* is a constant and a < 0.

D is the point such that $\overrightarrow{AB} = \overrightarrow{BD}$.

- (i) Find the position vector of *D*.
- (ii) If $\overrightarrow{AC} = 4$, find the value of *a*.
- (b) Consider the figure below, which shows two right-angled triangles.

Prove by contradiction that p, q and r cannot all be integers.

(c) A particle moves in a straight line. At time t seconds, its displacement from a fixed origin is x metres and its velocity is v m/s. The acceleration of the particle is given by $\ddot{x} = x + 3$. At t = 0, the particle is at the origin and moving with velocity 3 m/s.

(i) Show that
$$v = x + 3$$

- (ii) Find an expression for *x*, the displacement of the particle, in terms of *t*.
- d) A sphere is represented by the equation

$$x^{2} + 2x + y^{2} - 5y + z^{2} - 4z + k = 0.$$

- (i) Determine the centre, c_{c} , and radius of the sphere.
- (ii) It is given that the x-z plane is tangential to the sphere. Determine the value of k.

2

3

3

2

2

2

1

(a) Consider the following statement, where *x* is an integer.

'If $x^2 - 6x + 5$ is even, then x is odd.'

(b) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{0}^{\frac{\pi}{3}} \frac{2}{1 + \sin x + \cos x} dx$. 3

(c) Consider
$$I_n = \int x^m \ln^n x \, dx$$

(i) Show that
$$I_n = \frac{x^{m+1}}{m+1} \ln^n x - \frac{n}{m+1} I_{n-1}$$
 2

(ii) Hence, evaluate
$$I_n = \int_1^2 x^3 \ln^4 x \, dx$$
 3

(d) Consider the complex number z = i.

(i) Explain why z can be written as
$$e^{i\frac{\pi}{2}}$$
 1

(ii) Hence prove that $i^i \approx 0.208$. 2

(iii) By considering another value of arg(i) find a value of i^i that is greater than 1.

MARKS

(a)	A part	icle P of mass $m \text{ kg}$ is released from rest and falls under its own weight.	
	The pather the spectrum	article is subject to air resistance of magnitude kmv^2N , where $v \text{ ms}^{-1}$ is eed of the particle after it has travelled $x \text{ m}$ and k is a positive constant.	
	(i)	Show that $v^2 = (1 - e^{-2kx})\frac{g}{k}$.	3
	(ii)	Hence determine the terminal velocity, V_T , of the particle.	1
	(iii)	Show that the particle attains a speed of $\frac{1}{2}V_T$ after it has fallen a distance of	
		$\frac{1}{2k}\ln\left(\frac{4}{3}\right)$ metres.	2
(b)	A part $v^2 = 4$	icle is moving on a straight line. Its velocity v is given by $(2x - x^2)$ where x is its displacement from a point O on the line.	
	(i)	Show that its acceleration is given by $\ddot{x} = -4(x-1)$.	2
	(ii)	Explain why this particle moves in simple harmonic motion.	1
	(iii)	Find the maximum speed of the particle.	1
(c)	Consid Line L	der points $A(1, 3, 1)$, $B(2, 5, -1)$ and $C(7, 5, -1)$. passes through point B and bisects $\angle ABC$.	
	Find tl	ne vector equation of line L.	2

MARKS

(d) Find the roots of the complex equation $\omega^4 = (\omega - 2)^4$ in the form a + bi where $a, b \in \mathbb{R}$. 3

3

3

- (a) With respect to a fixed origin *O*, the lines l_1 and l_2 are given by the equations: $l_1 : r = 9\underline{i} + 13\underline{j} - 3\underline{k} + \lambda(\underline{i} + 4\underline{j} - 2\underline{k})$ and $l_2 : r = 2\underline{i} - \underline{j} + \underline{k} + \mu(2\underline{i} + \underline{j} + \underline{k})$ where λ and μ are scalar parameters.
 - (i) Given that l_1 and l_2 meet, find the position vector of their point of intersection.
 - (ii) Find the acute angle between l_1 and l_2 , correct to the nearest tenth of a degree. 2
 - (iii) Given that the point *A* has position vector $4\underline{i} + 16\underline{j} 3\underline{k}$, and that the point $P(x_1, y_1, z_1)$ lies on l_1 such that *AP* is perpendicular to l_1 , find the exact coordinates of *P*.
- (b) (i) Using de Moivre's theorem, show that

$$\tan 5\theta = \frac{5\tan\theta - 10\tan^3\theta + \tan^5\theta}{1 - 10\tan^2\theta + 5\tan^4\theta}.$$

(ii) Hence show that
$$\tan^2\left(\frac{\pi}{5}\right)$$
 and $\tan^2\left(\frac{2\pi}{5}\right)$ are the roots of the equation $x^2 - 10x + 5 = 0$.

(c) For a complex number z, shade the region of the Argand Plane in which |z| < 3 and -2 < Im(z) < 2.

2

Question 16 (15 marks) Use the Question 16 Writing Booklet.

(a) Find
$$\int \frac{\sqrt{x}}{4+x} dx$$
. 3

(b) In a sequence of numbers,
$$T_1 = 7$$
 and $T_n = 2T_{n-1} - 1$ for $n \ge 2$.
Use mathematical induction to prove that $T_n = 3 \times 2^n + 1$ for $n \ge 1$.

(c) Recall that $x + \frac{1}{x} \ge 2$ for any real number x > 0. (DO NOT PROVE THIS)

(i) Prove that
$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9$$

for all real numbers $a > 0, b > 0, c > 0$.

(ii) Hence prove that
$$\left(\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}\right) \ge \frac{3}{2}$$

for all real numbers $a > 0, b > 0, c > 0$.

(d) Consider the graph of the function
$$f(x) = \frac{x^3 + 1}{x^5 + 1}$$
.

Using the substitution $u = \frac{1}{x}$, prove that the area under f(x) between x = 0 and x = 1 is half the area under f(x) for $x \ge 0$.

End of paper

2

3

4

Yes, THIS PAGE IS BLANK Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

 $l = \frac{\theta}{360} \times 2\pi r$

Area

$$A = \frac{\theta}{360} \times \pi r^2$$
$$A = \frac{h}{2} (a+b)$$

Surface area

 $A = 2\pi r^2 + 2\pi rh$ $A = 4\pi r^2$

Volume

$$V = \frac{1}{3}Ah$$
$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:
 $\alpha + \beta + \gamma = -\frac{b}{a}$
 $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

 $\left(x-h\right)^2+\left(y-k\right)^2=r^2$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_{n} = a + (n-1)d$$

$$S_{n} = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2}(a+l)$$

$$T_{n} = ar^{n-1}$$

$$S_{n} = \frac{a(1-r^{n})}{1-r} = \frac{a(r^{n}-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1-r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$
$$\log_a x = \frac{\log_b x}{\log_b a}$$
$$a^x = e^{x \ln a}$$

Trigonometric Functions

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $\text{If } t = \tan \frac{A}{2} \text{ then } \sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$

An outlier is a score less than $Q_1 - 1.5 \times IQR$ or more than $Q_3 + 1.5 \times IQR$

Normal distribution

- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = \mu$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {^{n}C_{r}p^{r}(1-p)^{n-r}}$$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {\binom{n}{x}p^{x}(1-p)^{n-x}, x = 0, 1, \dots, n}$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

Differential Calculus

Integral Calculus

FunctionDerivative
$$\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$$

where $n \neq -1$ $y = f(x)^n$ $\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$ $\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$
where $n \neq -1$ $y = uv$ $\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$ $\int f'(x)xx dx = -\cos f(x) + c$ $y = g(u)$ where $u = f(x)$ $\frac{dy}{dx} = \frac{du}{dx} \times \frac{du}{dx}$ $\int f'(x)\sin f(x) dx = -\cos f(x) + c$ $y = g(u)$ where $u = f(x)$ $\frac{dy}{dx} = \frac{du}{dx} \times \frac{du}{dx}$ $\int f'(x)\cos f(x) dx = \sin f(x) + c$ $y = g(u)$ where $u = f(x)$ $\frac{dy}{dx} = \frac{vdu}{dx} - u\frac{dv}{dx}$ $\int f'(x)\cos f(x) dx = \tan f(x) + c$ $y = u^n$ $\frac{dy}{dx} = f'(x)\cos f(x)$ $\int f'(x)e^{f(x)} dx = \tan f(x) + c$ $y = \sin f(x)$ $\frac{dy}{dx} = -f'(x)\sin f(x)$ $\int f'(x)e^{f(x)} dx = \ln|f(x)| + c$ $y = \cos f(x)$ $\frac{dy}{dx} = f'(x) \sec^2 f(x)$ $\int f'(x)a^{f(x)} dx = \ln|f(x)| + c$ $y = tan f(x)$ $\frac{dy}{dx} = f'(x)e^{f(x)}$ $\int f'(x)a^{f(x)} dx = \frac{a^{f(x)}}{\ln a} + c$ $y = \ln f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{(\pi a)f(x)}$ $\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1}\frac{f(x)}{a} + c$ $y = \log_a f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$ $\int \frac{u^{dy}{dx} dx = uv - \int v \frac{du}{dx} dx$ $y = \log_a f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int \frac{u^{dy}{dx} dx = uv - \int v \frac{du}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{1 - [f(x)]^2}$ $\int \frac{u^{dy}{dx} dx = uv - \int v \frac{du}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{1 - [f(x)]^2}$ $\int \frac{u^{dy}{dx} dx = uv - \int v \frac{du}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{1 - [f(x)]^2}$ $u^{dy} = uv - \int v \frac{du}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy$

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{aligned} \left| \underbrace{u}{u} \right| &= \left| x \underbrace{i}{v} + y \underbrace{j}{v} \right| = \sqrt{x^2 + y^2} \\ \underbrace{u \cdot v}{v} &= \left| \underbrace{u}{v} \right| \left| \underbrace{v}{v} \right| \cos \theta = x_1 x_2 + y_1 y_2, \\ \text{where } \underbrace{u}{v} &= x_1 \underbrace{i}{v} + y_1 \underbrace{j}{v} \\ \text{and } \underbrace{v}{v} &= x_2 \underbrace{i}{v} + y_2 \underbrace{j}{v} \end{aligned}$$

$$r = a + \lambda b$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$
$$= re^{i\theta}$$
$$\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$$
$$= r^n e^{in\theta}$$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

.

HURLSTONE AGRICULTURAL HIGH SCHOOL

2022 Trial Higher School Certificate Examination Mathematics Extension 2

Name _____ Teacher _____

Section I – Multiple Choice Answer Sheet

Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		АO	В 🔴	C O	d O

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

		A 👅		B	C O	D O
1.	$A \bigcirc$	в 〇	c 🔿	D 🔿		
2.	$A \bigcirc$	B 🔿	c 🔿	D 🔿		
3.	$A \bigcirc$	B 🔿	c 🔿	D 🔿		
4.	$A \bigcirc$	B 🔿	C 🔿	D 🔿		
5.	$A \bigcirc$	B 🔿	c 🔿	D 🔿		
6.	$A \bigcirc$	в 〇	с О	D 🔿		
7.	$A \bigcirc$	B 🔿	c 🔿	D 🔿		
8.	$A \bigcirc$	B 🔿	с 🔿	D 🔿		
9.	$A \bigcirc$	в 〇	с О	D 🔿		
10.	A ()	в 🔿	с 🔿	D 🔿		

ear 12	Mathematics Extension 2 E CHOICE Solutions and Marking Guidelines	Ass Task 4 2022 HSC
Part / Dutcome	Solutions	ANSWER
1	distance = $\sqrt{(-2)^2 + (3\sqrt{3})^2 + 4^2} = \sqrt{47}$	С
2	B is correct. Multiplication by $-i$ will cause a rotation of 90 and multiplication by 3 will cause an enlargement factor of A is incorrect. This option would cause a rotation of 90° an	b ^o clockwise, 3. B ticlockwise. $\frac{\pi}{i}$
	C and D are incorrect. The correct solution in Euler form is	$\omega = -3e^2$.
3	C is correct. In a negation statement, the phrases 'there exist all' must be interchanged, 'and' and 'or' must be interchange change to ' \neq ', and '>' must change to ' \leq '. A, B and D are incorrect. These statements do not show an negation of the statement.	st' and 'for ged, '=' must C accurate
	$z^6 = 1 \rightarrow z = 1 + 0i$ is one solution	
4	the 5 other solutions found by rotating by $\frac{\pi}{3}$.	А
	(ie of solutions evenily spaced around chicle) $z^{3} = i = e^{i\pi}$	
	$z = (e^{i\pi})^{\frac{1}{3}} \rightarrow z = e^{\frac{\pi}{3}i}$ is one solution	
	the 2 other solutions found by rotating by $\frac{2\pi}{3}$.	
	(ie 3 solutions evenly spaced around circle)	
5	The centre of <i>C</i> is the midpoint of <i>AB</i> . ie $2 - 3i$.	
	$AB = \sqrt{(3-2)^2 + (-1+5)^2} = 2\sqrt{5}$	В
	so radius is $\sqrt{5}$. Equation of circle is $ z - (2 - 3i) = \sqrt{5}$	
6	$x = 2 \tan \theta$ works best. That's it \textcircled{O}	D

$$x = 2 \tan \theta \Rightarrow dx = 2 \sec^{2} \theta d\theta$$
so $\int \frac{1}{x\sqrt{4+x^{2}}} dx = \int \frac{2 \sec^{2} \theta d\theta}{2 \tan \theta \sqrt{4+4 \tan^{2} \theta}}$

$$= \int \frac{\sec^{2} \theta d\theta}{\tan \theta \times 2\sqrt{1+\tan^{2} \theta}} = \frac{1}{2} \int \frac{\sec^{2} \theta d\theta}{\tan \theta \sqrt{\sec^{2} \theta}}$$

$$= \frac{1}{2} \int \frac{\sec^{2} \theta d\theta}{\tan \theta \sec \theta}$$
etc...
the main thing is, the binomial under the $\sqrt{-}$ has been eliminated
$$7 \qquad |u| \times y \cdot y = \sqrt{2^{2} + 1^{2} + 3^{2}} \times (4^{2} + 2^{2} + 4^{2})$$

$$= \sqrt{14} \times 36$$
B
$$T = \frac{2\pi}{n} = \pi \implies n = 2$$
Using $v^{2} = n^{2}(a^{2} - n.50^{2})$

$$a = 1.3 \text{ m}$$

$$v_{max} = \sqrt{2^{2}(1.3^{2} - 0^{2})}$$
ie when $x = 0$ (centre of motion)
$$= 2.60 \text{ m/s}$$
B
$$\frac{u = \tan^{-1}x}{1 + x^{2}} \qquad v = x dx$$

$$\int uv^{2} dx = uv - \int u^{1}v dx$$

$$\int \tan^{-1} dx = x \tan^{-1}x - \int \frac{x}{1 + x^{2}} dx$$
A
$$\int dv = \int x dx$$

$$\frac{d}{dx} = x$$

$$\int dv = \int x dx$$

$$v = \frac{x^{2}}{2} + C$$
, which is a parabola
$$\therefore \text{ must be } \Lambda$$

	Question 11 continued	
(b) <i>MEX12-5</i>	$\int \frac{4x-1}{x^2+2x+6} dx = \int \frac{4x+4-5}{x^2+2x+6} dx$ = $2\int \frac{2x+2}{x^2+2x+6} dx - 5\int \frac{1}{x^2+2x+6} dx$ = $2\ln x^2+2x+6 - 5\int \frac{1}{(x+1)^2+5} dx$ = $2\ln x^2+2x+6 - \sqrt{5}\tan^{-1}\left(\frac{x+1}{\sqrt{5}}\right) + C$	3 marks – Correct solution 2 marks – Substantially correct • Separates the expression into two fractions <i>AND</i> • Derives $2\ln x^2 + 2x + 6 $ 1 mark – Partial progress towards correct solution • Separates the expression into two fractions <i>OR</i> • Derives $2\ln x^2 + 2x + 6 $ <i>OR</i> • Equivalent merit
(c) MEX12-4	Coefficients are real so if $1-2i$ is a root, then $1+2i$ is also a root.	2 marks – Correct solution
	Product of roots $\alpha\beta\delta = -\frac{d}{a}$ $(1+2i)(1-2i)\alpha = -15$ $5\alpha = -15$ $\alpha = -3$	1 mark – Substantially correct
	Sum of roots $\alpha + \beta + \delta = -\frac{b}{a}$ $(1+2i) + (1-2i) - 3 = -a$ $a = 1$	

	Question 11 continued	
(d)(i) MEX12-6	Resistance $F = kv$ $40 = k \times 10$ k = 4 Resultant force $F = ma = -kv$ ma = -4v $a = -\frac{4}{m}v$	1 mark – Correct solution also accept $a = -4v$ note: resistance works <i>against</i> motion, so as $v > 0$, a < 0. No marks awarded if acceleration was not shown to be –ve.
(d)(ii) MEX12-6	$\frac{dv}{dt} = g - kv \qquad (m = 1)$ $= 10 - 4v$ $\frac{dt}{dv} = \frac{1}{10 - 4v}$ $\int_{0}^{t} dt = \int_{0}^{v} \frac{1}{10 - 4v} dv$ $[t]_{0}^{t} = \left[-\frac{1}{4} \ln 10 - 4v \right]_{0}^{v}$ $t = -\frac{1}{4} \left[\ln 10 - 4v - \ln 10 \right]$ $t = \frac{1}{4} \ln \left \frac{10}{10 - 4v} \right $ $e^{4t} = \frac{10}{10 - 4v}$ $10 - 4v = \frac{10}{e^{4t}}$ $-4v = \frac{10}{e^{4t}} - 10$ $v = \frac{5}{2} - \frac{5}{2e^{4t}}$	 3 marks – Correct solution 2 marks – Substantially correct solution 1 mark – Partial progress towards correct solution Note: generic, or rote-learned solution (in terms of g and k) awarded maximum 2 marks. Values from question were required in final answer

Higher School Certificate

Mathematics Extension 2 Solutions and Marking Guidelines

Question No. 12 Solutions and Marking Guidelines					
Outcomes Addressed in this Question					
MEX12-1 understands and uses different representations of numbers and functions to model,					
prove resu	prove results and find solutions to problems in a variety of contexts.				
MEX12-2	chooses appropriate strategies to construct arguments and pro	ofs in both practical			
and abstra	ict settings.	·			
MEX12.3	uses vectors to model and solve problems in two and three dim	ensions			
MEX12-5	uses mechanics to model and solve president in two drid three diff				
101122112-0					
Orreto arrea	0.1.4				
Outcome	Solutions	Marking Guidelines			
(a)	(a) (i)	(a) (i) 2 marks:			
MEX12-3	(2) (4)	Correct solution			
	$\begin{vmatrix} \overrightarrow{\mathbf{H}} & \overrightarrow{\mathbf{D}} \end{vmatrix} = \begin{bmatrix} \overrightarrow{\mathbf{H}} & \overrightarrow{\mathbf{H}} & \overrightarrow{\mathbf{H}} \end{vmatrix} = \begin{bmatrix} 10 \end{bmatrix}$	1 mark: Significant			
	$AB = BD = \begin{vmatrix} -5 \end{vmatrix}$ $AD = 2AB = \begin{vmatrix} -10 \end{vmatrix}$	progress			
		p8			
	(2+4) (6)				
	Hence position vector for D: $\begin{vmatrix} 3-10 \end{vmatrix} = \begin{vmatrix} -7 \end{vmatrix}$				
	(-4+10) (10)				
	(ii)	(ii) 3 marks: Correct			
	(a - 2)	solution, including all			
	\longrightarrow $\left \begin{array}{c} u-z \end{array} \right $	aspects shown			
	$AC = \begin{bmatrix} 2 \end{bmatrix}$	2 marks: One aspect			
	$\left \begin{array}{c} 2 \end{array} \right $	of solution not			
	$ \overrightarrow{AC} = 4$ $\therefore (a-2)^2 + 2^2 + 2^2 = 16$	snown.			
		1 mark: Relevant			
	$a=2-2\sqrt{2}$ since a is negative.	progress.			
(b)		(b) 3 marks: Full			
MEX12-1	(b) Assume <i>p</i> , <i>q</i> , <i>r</i> are integers. Hence the Pythagorean Triads:	solution with			
MEX12-2	$p^{2} + q^{2} = r^{2}$ and $(p+1)^{2} + (q+1)^{2} = (r+1)^{2}$	reasoning and			
		explanations			
	$\therefore p^2 + 2p + 1 + q^2 + 2q + 1 = r^2 + 2r + 1$	2 manles. One aspect			
	$r^{2} + 2n + 2a + 2 = r^{2} + 2r + 1$	2 marks: One aspect			
		of solution not			
	2(p+q)=2r-1	snown.			
	LHS even: RHS odd	I mark: Relevant			
	Gives a contradiction so the assumption that $n \in \mathcal{A}$ and r are	progress.			
	Gives a contradiction, so the assumption that p, q , and r are				
	integers must be faise.				

(c) MEX12-6	(c) (i) $\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = x+3$ $\frac{1}{2}v^{2} = \int x+3dx$ $=\frac{1}{2}x^{2}+3x+c \qquad x = 0 \text{ gives } v = 3$ $\frac{1}{2}(3^{2}) = c = \frac{9}{2}$ $\therefore \frac{1}{2}v^{2} = \frac{x^{2}}{2}+3x+\frac{9}{2}$ $v^{2} = \pm (x+3)^{2}$ Initial conditions give positive velocity towards the positive side of the x-axis, so v can only ever be positive. Hence $v = x+3$	(c) (i) 2 marks: Correct solution including justification for positive sqrt only. 1 mark: Significant progress.
	(c)(ii) $\frac{dx}{dt} = x + 3 \rightarrow \frac{dt}{dx} = \frac{1}{x+3}$ $t = \ln(x+3) + c \qquad t = 0 \text{ gives } x = 0$ $0 = \ln 3 + c \qquad \rightarrow \qquad c = -\ln 3$ $\therefore t = \ln\left(\frac{x+3}{3}\right)$ $e^{t} = \frac{x+3}{3}$ $x = 3e^{t} - 3$ (b)(i)	 (ii) 2 marks: Correct solution including all relevant steps. 1 mark: Significant progress towards correct solution.
(d) MEX 12-3	(d)(i) $x^{2} + 2x + 1 + y^{2} - 5y + \frac{25}{4} + z^{2} - 4z + 4 = \frac{45}{4} - k$ $(x+1)^{2} + \left(y - \frac{5}{2}\right)^{2} + (z-2)^{2} = \frac{45 - 4k}{4}$ \therefore Centre = $\left(-1, \frac{5}{2}, 2\right)$ Radius = $\frac{\sqrt{45 - 4k}}{2}$	 d)(i) 2 mark: Both components answered correctly. 1 mark: At least one component correct.
	(d) (ii) Distance from the <i>x</i> - <i>z</i> plane is the <i>y</i> -value. $\frac{\sqrt{45-4k}}{2} = \frac{5}{2}$ $45-4k=25 \rightarrow k=5$	(ii) 1 mark: Correct solution (CFPA (i)).

Year 12	Mathematics Extension 2 2022	TASK 4 (TRIAL)
Question No	b. 13Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	
MEX12-1 und to j	derstands and uses different representations of numbers and functions to model problems in a variety of contexts	, prove results and find solutions
MEX12-4 use	s the relationship between algebraic and geometric representations of complex	numbers and complex number
MEX12-5 apr	blies to prove results, model and solve problems blies techniques of integration to structured and unstructured problems	
Part /	Solutions	Marking Guidelines
Outcome		
(a)(i) MEX12-1	If x is even, then $x^2 - 6x + 5$ is odd	1 mark – Correct solution
(a)(ii) MEX12-1	Suppose that x is even, ie $x = 2k$ for integer k.	2 marks – Correct solution
	$x^{2} - 6x + 5 = (2k) - 6(2k) + 5$	1 mark – Substantially
	$=4k^2-12k+5$	correct
	$=2(2k^2-6k+2)+1$	
	= 2m + 1, where <i>m</i> is an integer	
	Hence, $x^2 - 6x + 5$ is odd and the statement is proven by proving the contrapositive.	
(b) MEX12-5	$t = \tan \frac{x}{2}$ $\frac{x}{2} = \tan^{-1} t$ $x = 2 \tan^{-1} t$ $dx = \frac{2}{1+t^2} dt$ $\int_{0}^{\frac{1}{\sqrt{3}}} \frac{2}{1+\sin x + \cos x} dx = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2}{1+\frac{2t}{1+t^2}} \frac{2}{1+t^2} dt$	3 marks – Correct solution 2 marks – Substantially correct
	$\int_{0}^{0} 1 + \frac{1}{1+t^{2}} + \frac{1}{1+t^{2}}$ $= \int_{0}^{\frac{1}{\sqrt{3}}} \frac{4dt}{1+t^{2}+2t+1-t^{2}}$ $= \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2dt}{t+1} = 2\left[\ln\left(1+t\right)\right]_{0}^{\frac{1}{\sqrt{3}}}$ $= 2\ln\left(1+\frac{1}{\sqrt{3}}\right)$	1 mark – Partial progress towards correct solution

	Question 13 continued	
(c)(i) <i>MEX12-5</i>	$u = \ln^{n} x \qquad v' = x^{m}$ $u' = \frac{n \ln^{n-1} x}{x} \qquad v = \frac{x^{m+1}}{m+1} dx$ $\int uv' dx = uv - \int u' v dx$ $\int x^{m} \ln^{n} x dx = \frac{x^{m+1}}{m+1} \ln^{n} x - \int \frac{x^{m+1}}{m+1} \frac{n \ln^{n-1} x}{x} dx \qquad *$ $= \frac{x^{m+1}}{m+1} \ln^{n} x - \frac{n}{m+1} \int x^{m} \ln^{n-1} x dx$ $= \frac{x^{m+1}}{m+1} \ln^{n} x - \frac{n}{m+1} I_{n-1}$	2 marks – Correct solution 1 mark – Substantially correct NB: this is a <i>show</i> question, and as such, it should be explicitly shown where the terms in this expression (*) come from
(c)(ii) MEX12-5	$\int_{1}^{2} x^{3} \ln^{4} x dx$ $= \left[\frac{x^{4}}{4} \ln^{4} x \right]_{1}^{2} - I_{3}$ $= \left[\frac{2^{4}}{4} \ln^{4} 2 - 0 \right] - \left\{ \left[\frac{x^{4}}{4} \ln^{3} x \right]_{1}^{2} - \frac{3}{4} I_{2} \right\}$ $= 4 \ln^{4} 2 - \left[\frac{2^{4}}{4} \ln^{3} 2 - 0 \right] + \frac{3}{4} \left\{ \left[\frac{x^{4}}{4} \ln^{2} x \right]_{1}^{2} - \frac{2}{4} I_{1} \right\}$ $= 4 \ln^{4} 2 - 4 \ln^{3} 2 + \frac{3}{4} \left[\frac{2^{4}}{4} \ln^{2} 2 - 0 \right] - \frac{3}{4} \times \frac{2}{4} \left\{ \left[\frac{x^{4}}{4} \ln x \right]_{1}^{2} - \frac{1}{4} I_{0} \right\}$ $= 4 \ln^{4} 2 - 4 \ln^{3} 2 + 3 \ln^{2} 2 - \frac{3}{4} \times \frac{2}{4} \left[\frac{2^{4}}{4} \ln 2 - 0 \right] + \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4} \int_{1}^{2} x^{3} dx$ $= 4 \ln^{4} 2 - 4 \ln^{3} 2 + 3 \ln^{2} 2 - \frac{3}{2} \ln 2 + \frac{3}{32} \left[\frac{x^{4}}{4} \right]_{1}^{2}$ $= 4 \ln^{4} 2 - 4 \ln^{3} 2 + 3 \ln^{2} 2 - \frac{3}{2} \ln 2 + \frac{3}{32} \left[4 - \frac{1}{4} \right]$ $= 4 \ln^{4} 2 - 4 \ln^{3} 2 + 3 \ln^{2} 2 - \frac{3}{2} \ln 2 + \frac{45}{128}$	 3 marks – Correct solution 2 marks – Substantially correct 1 mark – Partial progress towards correct solution

	Question 13 continued	
(d)(i) MEX12-4	$\arg i = \frac{\pi}{2}$ and $ i = 1$, so $z = 1e^{i\frac{\pi}{2}}$	1 mark – Correct solution
(d)(ii) MEX12-4	$i^{i} = \left(e^{i\frac{\pi}{2}}\right)^{i} = e^{i^{2}\frac{\pi}{2}}$ $= e^{-\frac{\pi}{2}} \approx 0.208$	 2 marks – Correct solution 1 mark – Substantially correct solution
(d)(iii) MEX12-4	$\arg i = \frac{-3\pi}{2} \to i = e^{-i\frac{3\pi}{2}}$ $i^{i} = \left(e^{-i\frac{3\pi}{2}}\right)^{i} = e^{\frac{3\pi}{2}} \approx 111.318$	1 mark – Correct solution
	Alternate way to handle (c)(ii) $I_{0} = \int_{1}^{2} x^{3} (\ln x)^{0} dx = \left[\frac{x^{4}}{4}\right]_{1}^{2} = \frac{15}{4}$ $I_{1} = \left[\frac{x^{4}}{4} \ln x\right]_{1}^{2} - \frac{1}{4} I_{0}$ $= 4 \ln x - \frac{1}{4} \left(\frac{15}{4}\right) = 4 \ln x - \frac{15}{16}$ $I_{2} = \left[\frac{x^{4}}{4} \ln^{2} x\right]_{1}^{2} - \frac{2}{4} I_{1}$ $= 4 \ln^{2} x - \frac{2}{4} \left[4 \ln x - \frac{15}{16}\right]$ $= 4 \ln^{2} x - 2 \ln x + \frac{15}{32}$ $I_{3} = \left[\frac{x^{4}}{4} \ln^{3} x\right]_{1}^{2} - \frac{3}{4} I_{2}$ $= 4 \ln^{3} x - \frac{3}{4} \left[4 \ln^{2} x - 2 \ln x + \frac{15}{32}\right]$ $= 4 \ln^{3} x - 3 \ln^{2} x + \frac{3}{2} \ln x - \frac{45}{128}$ $I_{4} = \left[\frac{x^{4}}{4} \ln^{4} x\right]^{2} - \frac{4}{4} I_{3}$	
	$= 4 \ln^{4} x - \frac{4}{4} \left[4 \ln^{3} x - 3 \ln^{2} x + \frac{3}{2} \ln x - \frac{45}{128} \right]$ = $4 \ln^{4} x - 4 \ln^{3} x + 3 \ln^{2} x - \frac{3}{2} \ln x + \frac{45}{128}$	

Higher School CertificateMathematics Extension 2		Task 4 2022 HSC		
Question N	Question No. 14 Solutions and Marking Guidelines			
Outcomes Addressed in this Question				
MEX12-1 prove resu	understands and uses different representations of numbers and lts and find solutions to problems in a variety of contexts.	d functions to model,		
MEX12-3	uses vectors to model and solve problems in two and three dim	nensions		
MEX12-4	uses the relationship between algebraic and geometric represe	entations of complex		
numbers a	ind complex number techniques to prove results, model and solve p	problems.		
Outcome	Solutions	Marking Guidelines		
(a)	(a) (i)	(a) (i) 3 marks:		
MEX12-6	$ma = mg - kmv^2$ where $k > 0$	Correct solution,		
		including all aspects		
	$a = g - kv^2$	shown.		
	$v \frac{dv}{dt} = g - kv^2$	2 marks: One aspect		
	dx	of solution not		
	$\frac{dx}{dx} = \frac{v}{v}$	SNOWN. 1 mark: Relevant		
	$dv g - kv^2$	nrogress		
	$x = -\frac{1}{2k}\ln\left(g - kv^2\right) + c$	10		
	$x = 0$ when $v = 0$ $\therefore c = \frac{1}{2k} \ln g$			
	$x = \frac{1}{2k} \ln g - \frac{1}{2k} \ln \left(g - kv^2\right)$			
	$x = \frac{1}{2k} \ln\left(\frac{g}{g - kv^2}\right)$			
	$\therefore e^{2kx} = \frac{g}{g - kv^2}$			
	$g - kv^2 = ge^{-2kx}$			
	$v^2 = \frac{g}{k} \left(1 - e^{-2kx} \right)$			
	(a) (ii) As $x \to x^{-2kx} \to 0$	(ii) 1 mark: Correct		
	As $x \to \infty, e \to 0$	answer with		
	$\therefore v^2 \to \frac{g}{k} \qquad v_T = \sqrt{\frac{g}{k}}$	Justification.		
	(a)(iii)	(iii) 2 marks: Correct		
	Substituting for x. $(1 4)$	substitution and		
	$v^{2} = \left(1 - e^{-2k\left(\frac{1}{2k}\ln\frac{1}{3}\right)}\right)\frac{g}{k}$	reasoning. 1 mark: Substantial progress.		
	$=\left(1-e^{\frac{3}{4}}\right)\frac{g}{k}$	1 0 000		
	$=\left(1-\frac{3}{4}\right)\frac{g}{k}$			
	$\therefore v = \frac{1}{2} \sqrt{\frac{g}{k}} = \frac{1}{2} v_T$			

(b) (i) (b) (i)
$$\frac{1}{2}v^2 = 2(2x-x^2)$$

 $\frac{1}{2}v^2 = 2(2x-x^2)$
 $\frac{1}{2}v^2 = 2(2-2x)$
 $= -4(x-1)$
(b) (ii) \hat{x} is in the form $-n^2(x-c)$
Therefore motion is SHM.
(b) (iii)
 $\hat{x} = 0$ when $x = 1$
 $\therefore v^2 = 4(2(1)-(1)^2) = 4$
 \therefore Max speed $= 2ms^{-1}$
(c)
MEX12.3
(c)
MEX12.3
For BD to bisect $\angle ABC$ we have the following vector sum.
 $\overline{BD} = \overline{BA} + \frac{2}{5} \frac{\overline{BC}}{2}$
 $= (\frac{-1}{-1} + \frac{2}{5} \left(\frac{5}{0} \right) = (\frac{2}{2})$
This is a direction vector for line L. Line L also passes through
point B.
 $L = \left(\frac{2}{5} - \frac{1}{2} + x \right) \left(\frac{1}{-1} \right)$

Year 12	Mathematics Extension 2 2022	TASK 4 (TRIAL)	
Question No	b. 15Solutions and Marking Guidelines		
	Outcomes Addressed in this Question		
MEX12-3 uses vectors to model and solve problems in two and three dimensions MEX12-4 uses the relationship between algebraic and geometric representations of complex numbers and complex number techniques to prove results, model and solve problems			
Part / Outcome	Solutions	Marking Guidelines	
(a)(i) MEX12-3	Solving l_1 and l_2 simultaneously, $\begin{pmatrix} 9\\13\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 2\\-1\\1 \end{pmatrix} + \mu \begin{pmatrix} 2\\1\\1 \end{pmatrix}$ so, $9 + \lambda = 2 + 2\mu$ $\lambda = 2\mu - 7$ [] and $13 + 4\lambda = -1 + \mu$ $\mu = 4\lambda + 14$ [2] sub [] \rightarrow [2] $\mu = 4(2\mu - 7) + 14$ $-7\mu = -14$ $\mu = 2$ and $\lambda = 2(2) - 7 = -3$ $\therefore r = 9i + 13j - 3k + \lambda(i + 4j - 2k)$ = 9i + 13j - 3k - 3(i + 4j - 2k) = 6i + j + 3k	 <i>l</i>₁ <i>l</i>₂ 3 marks – Correct solution 2 marks – Substantially correct 1 mark – Partial progress towards correct solution 	
(a)(ii) MEX12-3	$l_{1} \text{ has direction vector } \underline{a} = \underline{i} + 4\underline{j} - 2\underline{k}$ $l_{2} \text{ has direction vector } \underline{b} = 2\underline{i} + \underline{j} + \underline{k}$ $\cos\theta = \frac{\underline{a} \cdot \underline{b}}{ \underline{a} \times \underline{b} }$ $= \frac{1 \times 2 + 4 \times 1 + (-2) \times 1}{\sqrt{1^{2} + 4^{2} + (-2)^{2}} \times \sqrt{2^{2} + 1^{2} + 1^{2}}} = \frac{4}{\sqrt{21} \times \sqrt{6}}$ $\theta = \cos^{-1} \left(\frac{4}{\sqrt{126}}\right)$ $\approx 69.1^{\circ}$	2 marks – Correct solution 1 mark – Substantially correct	

(a)(ii)
MEXID-3
Question 15 continued...

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{y}_{1} \\ \mathbf{y}_{1} \\ \mathbf{z}_{1} \\ \mathbf{z}_{1} \\ \mathbf{z}_{1} \\ \mathbf{z}_{1} \\ \mathbf{z}_{1} \\ \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{1} \\ \mathbf{z}_{2} \\$$

Higher School Certificate	
Question No. 16	

Question N	No. 16 Solutions and Marking Guidelines	
Outcomes Addressed in this Question		
MEX12-1	understands and uses different representations of numbers and	d functions to model,
prove resu	ins and find solutions to problems in a variety of contexts.	ofs in both practical
and abstra	ct settings.	
MEX12-5	applies techniques of integration to structured and unstructured	d problems
Outcome	Solutions	Marking Guidelines
(a)	(a) Substitution method:	(a)3 marks:
MEX12-5	$u^2 = x \rightarrow 2udu = dx$	Substituting into a
	$c \sqrt{x}$ $c \mu$	new integral; altering
	$\int \frac{dx}{d+r} dx = \int \frac{dx}{d+r} dx^2 \cdot 2u du$	integrand solving and
	$+ u^2 - 4$	expressing answer in
	$=2\int \frac{4+u^{2}-4}{4+u^{2}} du$	terms of <i>x</i> .
	-4+u	2 marks: 2
	$\int \int \int \frac{1}{2}$	components correct.
	$=2\int du-4\int \frac{2}{(u-v)^2}du$	1 mark: Correct
	$1 + \left(\frac{u}{2}\right)$	substitution step
	$=2u-4\tan^{-1}\left(\frac{u}{2}\right)+c$	
	$=2\sqrt{x}-4\tan^{-1}\left(\frac{\sqrt{x}}{2}\right)+c$	
(1-)	(b)	(b)3 marks: All
(D) MEX12-1	RTP: $T = 3 \times 2^{n} + 1$	aspects of induction
MEX12-2	Step 1: Prove true for $n-1$	2 marks: Significant
	$T_1=7$ $3 \times 2^1 + 1 = 7$ Hence true for $n = 1$.	progress.
	Step 2: Assume: $T_{k} = 3 \times 2^{k} + 1$	1 mark: Relevant
	Prove: $T = -3 \times 2^{k+1} + 1$	progress.
	HIC = 2(T) = 1	
	$LHS = 2(I_k) - 1$	
	$=2(3\times 2^{k}+1)-1$	
	$= 3 \times 2^{k+1} + 2 - 1$	
	$= 3 \times 2^{k+1} + 1 \qquad = RHS$	
	Thus proven by mathematical induction.	
(c)	(c)(i)	(c) (i) 2 marks :
MEX12-1	$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) = 1 + \frac{a}{b} + \frac{a}{c} + \frac{b}{a} + 1 + \frac{b}{c} + \frac{c}{a} + \frac{c}{b} + 1$	Correct expansion and use of the axiom given.
	$= 3 + \left(\frac{a}{b} + \frac{b}{a}\right) + \left(\frac{a}{c} + \frac{c}{a}\right) + \left(\frac{b}{c} + \frac{c}{b}\right)$	1 mark: Substantial progress.
	$\geq 3 + 2 + 2 + 2 = 9$	
	\therefore LHS \ge RHS	

Mathematics Extension 2